GIS Surveyor - Land Survey and GIS Data Collector Reviews & Opinions


Submit GIS Surveyor - Land Survey and GIS Data Collector review or read customer reviews:

100 Reviews Found

Sort by: Most Accurate (default) | Newest | Top Rated

  • 0

    Is this review useful?

    GIS Surveyor - One Stop GPS/GNSS Survey App review [App]  2019-8-11 13:14

    can't obtain past theverify email screen

    0  


  • 0

    Is this review useful?

    Kunmap GIS Indonesia review [App]  2019-3-19 13:17

    keren Oom

    0  


  • 0

    Is this review useful?

    Data Analytics: Applicable Data Analysis to Advance Any Business Using the Power of Data Driven Analytics (Big Data Analytics, Data Science, Business Intelligence Book 6) review [Book]  2017-12-15 18:2

    This is a very comprehensive book which reveals the importance of Data Analytics in business: large volumes of info which is processed and analyzed with the goal of predicting patterns and improving the managerial decision-making process. After reading this book, you will definitely have a complete understanding of the concept.

    0  


    Add Your Opinion on GIS Surveyor - Land Survey and GIS Data Collector or Continue Reading Reviews Below ↓

     

    Watch GIS Surveyor - Land Survey and GIS Data Collector video reviews and related movies:

    See Land Survey data collection by Mobile Topographer Application (Mobile GIS) on youtube.

     related image

    See GIS Surveyor - One Stop GPS/GNSS Survey App for GIS Professionals and Surveyor on youtube.

     related image

    See GIS Survey (Phone and GPS Receiver) on youtube.

     related image

    See Best Mobile GIS Application on youtube.

     related image

    See Survey Grade GIS Data on youtube.

     related image

    See Survey Advancement information with GIS data on youtube.

     related image

    See SMOPS Professional Land/Drone Surveying & GIS Services on youtube.

     related image

    See Universal Geomatics - Survey, GIS, Project Management Services on youtube.

     related image

    Scroll down to see all opinions ↓

  • 0

    Is this review useful?

    Data Analytics: Applicable Data Analysis to Advance Any Business Using the Power of Data Driven Analytics (Big Data Analytics, Data Science, Business Intelligence Book 6) review [Book]  2017-12-15 18:2

    This book has introduced a wide range of ideas and concepts used for deriving useful info from a set of data. And also it contains data analytics techniques and what can be achieved by using them. It includes huge data analysis, advantage, considerations of pros and cons, methods, and more. The importance of huge data is also showed in this book as well as the software and everything required to improve business data.

    0  


  • 0

    Is this review useful?

    Data Analytics: Applicable Data Analysis to Advance Any Business Using the Power of Data Driven Analytics (Big Data Analytics, Data Science, Business Intelligence Book 6) review [Book]  2017-12-15 18:2

    Amazing overview without being too technical.

    0  


  • 0

    Is this review useful?

    Data Analytics: Applicable Data Analysis to Advance Any Business Using the Power of Data Driven Analytics (Big Data Analytics, Data Science, Business Intelligence Book 6) review [Book]  2017-12-15 18:2

    It's a broad high level overview of how data analytics can support businesses increase their productivity and gives guidance on the correct policies and tactics to adopt towards that end.

    0  


  • 0

    Is this review useful?

    Data Analytics: Applicable Data Analysis to Advance Any Business Using the Power of Data Driven Analytics (Big Data Analytics, Data Science, Business Intelligence Book 6) review [Book]  2017-12-15 18:2

    Data analysis is at least as much art as it is science. This book is focused on the info of data analysis that sometimes fall through the cracks in traditional statistics classes and textbooks. I concise introduction and instructions about all stages of data analysis. Each subject can be expanded into a much more deep communication but the suggestions mentioned are very practical. I think it's a amazing starting point if you're a new-comer to data analysis. And it would be helpful to frequently look it up when you're doing the process to create sure you're on the right track.

    0  


  • 0

    Is this review useful?

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking review [Book]  2017-10-14 22:24

    When trying to learn about a fresh field, one of the most common difficulties is to search books (and other materials) that have the right "depth". All too often one ends up with either a friendly but largely useless book that oversimplifies or a massive academic tome that, though authoritative and comprehensive, is condemned to sit gathering dust in one's shelves. "Data Science for Business" gets it just right.What I mean might become clearer if I point out what this book is *not*:- It is *not* a computer science textbook with a focus on theoretical derivations and algorithms.- It is *not* a "cookbook" that provides "step-by-step" guidance with small to no explanation of what one is doing.- It is *not* your standard "management" title on the cool tech du jour available at airport stands and meant to be read in one sitting (buzzwords, hype and overly enthusiastic statements making up for the dearth of actual content).Instead, it is close to being the excellent tutorial for the smart reader who -- regardless of whether s/he has a tech background -- has a sincere desire to learn how the tools and principles of data science can be used to extract meaningful info from large datasets. Highly recommended.

    0  


  • 0

    Is this review useful?

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking review [Book]  2017-10-14 22:24

    At it's core, Data science is the elimination of guess, intuition,hunch and decisions backed by Data .Data Science is ranked the Sexiest Job Of 21st Century by Harvard Business Review. Today there is a tremendous demand for everything "Data Science", Companies need "Data scientists", IT resources are refocusing themselves to be the "Data scientists". Contrary to famous beliefs that Marketing benefits a lot from data science, companies are finding benefits across the spectrum of their operations . Example : A leading Trucking company used Data mining skill to predict which part of the truck is going to break next instead of replacing it at specific intervals, a Leading insurer predicted those who will complete their antibiotic course based on their home ownership history. If this type of stories and scope interests you, read the book "Big Data: A Revolution That Will Transform How We Live, Work, and Think".I am an aspiring "Data Scientist" and so this review will have a slight tilt from a "Data Scientist" perspective over the business user.WHAT THIS BOOK IS ?This book is very well written ,but not for the faint heart. It is a text book and authors have taken lot of care so general audience can also benefit from it, and also not to dilute it's textbook value. To obtain the full benefit of the book, read about 50 pages ( Do not flip pages), never more than 10 -15 pages per session. The book is intense so you will need to take a break in between or will lose the thread. Once you are finished with fifteen pages, go to the first page and read , highlight the necessary locations and then go to the next page. So plan to read this book in a span of 2 -3 months. I know it is slow but if you wish to understand the inner workings of "Data science", there is not much other option. Alternative is to flip across several superficial articles that is a staple diet of every blog and magazines.WHAT THIS BOOK WILL DELIVER ?When you are finished with the book, you should have a fairly amazing understanding of data science, For example, what type of analysis that needs to be done to identify A. Will the Customer switch loyalty ? ( Yes / No ) B. What type of customers will cancel my subscription ? ( Ex : Middle Aged male from Manhattan will be 5% more likely to switch) C. What are the methodologies to identify If I can up-sell a customer ( Ex : Someone who bought this book also bought ) D. What is a supervised Segmentation and When will you use it ? ( When the target is clear, if the person will default on his loan) E. What is the significance of entropy in Data Science ? F. Exposure to several formula's ( sleep triggers as I call it). A lot of of the tools have in-built formula's but you still need some idea what these formula's are. G. Don't obtain defensive, be comfortable when your colleague sprinkles words like like Classification ,regression, Similarity Matching, Clustering, Modelling, Entropy etc.WHAT ELSE YOU WILL NEED ?Data Science does not exist in silo. It helps in decision making . So should be your learning, Here are my suggestions:1. First and foremost, you need to spend consistent time. If you are running short of time, don't even bother to start2. For those who are interested in understanding Data science, courseera dot org conducts a free 8 weeks course on "Introduction To Data Science" by an eminent Stanford Professor. It needs time and Commitment3. You can obtain true life examples to work on in coursesolve dot org ( ex: Analyze the sleep cycle)4. As a Data Scientist, you will need to understand "Big Data" . Browse an article and even experts use Data Science and Huge Data interchangeably. Hadoop is the core of Huge Data,but it is a globe of it's own.5. Read and begin experimenting with Hadoop , PIG , HIVE, HBASE and the variations it offers. I did a basics training at edureka dot in , an Indian firm, not a amazing training but enough for you to understand and then go on your own. But if time and cash permits, go to cloudera www service and sign up for training. you will not go wrong6. I signed up for Amazon elastic map reduce which has a higher level abstraction (for developers it is the difference between using sqlplus versus TOAD). It is not free but very cheap.7. Test to be the "umbilical cord that looks for a stomach to plug ", look for a mentor, look for opportunity in your firm or elsewhere to grow your Data scientist r those looking for inspiration , google for Rayid Ghani, Chief Data Scientist at Obama 2012 Campaign.

    0  


  • 0

    Is this review useful?

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking review [Book]  2017-10-14 22:24

    The institution tactic and goals need to be reflected in the procedures used to analyse the data base of the institution and the determination as to what data is relevant. The book discusses ways to get the data required and the short term volatility in return to the company that can result. But the authors present that this can eventually lead to improved efficiency focus and profitability for the company. The book requires a background in a number of supportive academics for full understanding . The discipline has defined its own language much like most of the technolgical disciplines and is best appreciated by those familiar with the vocabulary. It is a book that warrants study not just as a fast read for introduction. For a person studying or practicing in this zone I highly recommend this book for both its interest and as a reference book. Foster Provost and Tom Fawcett have created a valuable contribution to the understanding of Data Science.

    0  


  • 0

    Is this review useful?

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking review [Book]  2017-10-14 22:24

    Perfect discussion of data science methods without excessive focus on mathematical elements. These are included at a level that can be understood for the skilled marketer who has background but does not want to go deep into the math. The coverage is broad with both supervised and unsupervised methods in data mining. Subjects cover tree models to logistic regression, to scoring. A discussion of holdout model tests, prediction & validation. Particular emphasis is placed on how to frame questions to apply to the business case so suitable conclusions can tutorial business decisions and strategy. You will obtain the sense that the authors are war tested veterans of the data mining business and have applied their creativity to a broad range of business, data and technical y two caveats to this book. First, as purchaser of the kindle edition, I found the equations included in the text were sometimes very readable and sometimes the type was so little as not to be legible at all. Be warned. If you intend to follow the math that is included, perhaps the paper edition would be best. Second, this book does not dwell on the statistical packages that can be used to help data mining efforts. If you are interested in exploring these methods in practice, you will need to look further.

    0  


  • 0

    Is this review useful?

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking review [Book]  2017-10-14 22:24

    Foster Provost and Tom Fawcett are known for their work on fraud detection, among others. I have recently read their latest book, Data Science for Business – What you need to know about data mining and data-analytic thinking. No suspense: it’s one of the best data mining book I have ever read. Its style allows the book to be read by beginners, but its wide coverage and detailed case studies makes it a reference for experts as the title suggest, the book has a true focus on business with plenty of industry examples and challenges. The style is very pleasant since authors have created efforts to place the reader in specific situations to better understand a problem. To be noted the very interesting discussion of data mining leaks as well as data mining automation. The book is divided by concepts and provides a focus on them (instead of techniques). Although no exercice is present, the book could easily be used as a resource for a course.Each chapter is clearly divided into primary and advanced topics. The evaluation phase of the data mining standard process is deeply discussed. The section about Bayes rule is very well written. Data Science for Business is also an perfect resource to avoid data mining pitfalls. Chapter 13 is a must-read in order to understand success factor for implementing data mining in a company. To conclude, targeted at both beginners and experts, Data Science for Business is the fresh reference for data mining specialists working in industry.

    0  


  • 0

    Is this review useful?

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking review [Book]  2017-10-14 22:24

    This book is fantastic. it's a excellent mix of high-level explanation and technical details. There doesn't seem to be much to support one actually execute the methods described, but that does not appear to be the author's intent (which is why there is no negative impact on my rating).I appreciated the accessibility and plain English - albeit thorough - writing (from the perspective of a person who is self-taught in data science and sometimes less acquainted with the terminology).

    0  


  • 0

    Is this review useful?

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking review [Book]  2017-10-14 22:24

    An perfect resource for the Business Analyst (or the curious executive) looking for a comprehensive understanding of data analytics for business, especially the newer zone of heavy data/big data for business. This book gives a really solid grounding in both the business (strategic) and data (analytic, technical) aspects of modern data analytics. The authors clearly present that data is the next wave of change and that it will require a mindset change across all business functions--a mindset they call data-analytic thinking. If you need to master/improve this thinking skill set--here is a amazing put to begin no matter what your job vost and Fawcett have place a lot of work into the instructional design of this book--you can follow it down to the technical/mathematical level of algorithm design or just read the content concerning business tactic and general data design and use. Either way, you will achieve a satisfactory understanding that serves your purpose--the authors maintain a conceptual continuity at two or three levels of discourse. Very nicely done and very engaging. Five stars.

    0  


  • 0

    Is this review useful?

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking review [Book]  2017-10-14 22:24

    Note - I was provided an ebook ver in exchange for my review as part of the Library Thing Early Reviewers brief –This is a amazing book for any in the data science field or wanting to just understand “Big Data” or a manager/professional just trying to “get current. “ I have a masters degree in software engineering with a data science background and three years experience in a prior job in Data warehousing. It was a long read, especially with the holidays, but well worth it, and more enjoyable than almost every technical book I have every rengths – Organization, having technical info in a side by side section for those who wish it, covering info from definition, through use and application, as well as doing a amazing job explaining similarities and differences on key topics.Weaknesses – there are a few little locations I wanted more. Meaning if they could have somehow had more examples for the various models, situations, etc., especially as I got into more of the predictive models.

    0  


  • 0

    Is this review useful?

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking review [Book]  2017-10-14 22:24

    Provost and Fawcett's book is one of the very few in the field that neither condescends nor patronizes the reader as it explores the motivations and machinery behind the most commonly used data analysis techniques in the analytics professional's toolbox. While it stops short of providing detailed instruction on how to use these techniques, it provides the reader a solid foundation for taking this next hands-on step. And for those who are not working directly with data, but are otherwise stakeholders in the use of analytics to drive better organizational outcomes, this book will greatly enable you to understand and add value to the analytical process.---Zain KhandwalaExecutive Director,Institute for Advanced AnalyticsBellarmine UniversityLouisville, KY

    0  


  • 0

    Is this review useful?

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking review [Book]  2017-10-14 22:24

    Both authors practicing data science professionals. Their book outlines practical considerations, explains available tools and techniques, and shows results of a lot of well-chosen e book is appropriate for all data scientists, regardless of background or education. The math is minimal. There are no computer programs or algorithms.

    0  


  • 0

    Is this review useful?

    Branded Survey - Take a Survey review [App]  2019-2-7 13:24

    Lot of simple surveys to take and paypal checkouts...love this application

    0  


  • 0

    Is this review useful?

    Data Management: Foundations of Data Analytics review [Book]  2018-1-8 18:1

    I came across this book while searching for a textbook for my introductory course to DB. This book is of an extreme value. It is a comprehensive reference for traditional relational data modeling and SQL and also includes updated advanced material on data mining, natural language processing, visualization and huge data.What I also like about the book is that it blends theory and practice of data modeling and SQL. Each chapter in the first part of the book starts with a data modeling concept (i.e. single entity, one-many, many-many etc...) and then shows how to implement it and perform queries with e companion www service contains all slides, datasets, and partial solutions of the exercises. All of that for $10 with Kindle, I can't ask for more. This is a must for database students and practitioners as well.

    0  


  • 0

    Is this review useful?

    Data Management: Foundations of Data Analytics review [Book]  2018-1-8 18:1

    This is the worst textbook I've ever had to use. It's unnecessarily wordy, full of grammatical and formatting errors (in one part of the book, the same paragraph was printed twice in a row; in another, the book said that there were three reasons for something and then proceeded to list four - and there are related errors splattered throughout the entire book), and extremely hard to navigate. I have better luck jumping around randomly in the book in find of a section than I do trying to actually use the find function to search it. The author jumps around from topic to topic in a method that makes it hard to understand; it's almost like he place a bunch of SQL concepts in a hat and randomly drew a couple for each chapter he wrote. Furthermore, there is some weird story about a lady named Alice mixed in with the chapters in what I perceive to be an attempt to create the book slightly more interesting. I assume that my professor is private mates with the author, because that's the only reason I could think of for any professor to choose this book as a class textbook. The reason I gave it two stars instead of one is because the book has been useful in the context of my Database Management class, and it has been genuinely entertaining to read a textbook so poorly written. However, unless you are absolutely needed to have this textbook for your class, I'd recommend versus buying it. I'm sure there are much better-written SQL books out there that will teach you a lot more.

    0  


  • 0

    Is this review useful?

    Data Management: Foundations of Data Analytics review [Book]  2018-1-8 18:1

    Although the info contained is valid and helpful, I can search no logical method to locate that information. The Kindle ver is very difficult to navigate, (location values instead of page numbers). I had a classmate with the printed ver ask me for support in locating a specific exercise in a specific chapter. I couldn't do it because her ver (printed) had page numbers for reference, and my ver (Kindle) had zone values. I have been hesitant to purchase a Kindle product and after seeing how this text is presented in the Kindle application for Windows, I'll pass. The reason I purchased the Kindle ver is because it is "Required" under my educational program. In summary, the info is valid, but the presentation sucks.

    0  


  • 0

    Is this review useful?

    Data Management: Foundations of Data Analytics review [Book]  2018-1-8 18:1

    I got this book for my college class as needed by the school I'm attending. It is a amazing book with valuable info inside. But the fact that it was a kindle book created it very limited in terms of how I could learn the material. It is written like a novel. A book like this needs more interactive features on a platform like Pearson. I think it would have been much better if we bought a hard copy instead.

    0  


  • 0

    Is this review useful?

    Data Management: Foundations of Data Analytics review [Book]  2018-1-8 18:1

    I use this book, and have done so for years, in an MSc course for students from all sciences that wish to acquire literacy on database design and SQL. The students like it and it allows them to work quite independently, having both a lesurely pace and enough depth. The author keeps it up to date, 's not at its strongest as a reference; but since SQL versions differ and change, that might be too much to ask.

    0  


  • 0

    Is this review useful?

    Data Management: Foundations of Data Analytics review [Book]  2018-1-8 18:1

    Amazing text book!

    0  


  • 0

    Is this review useful?

    Data Management: Foundations of Data Analytics review [Book]  2018-1-8 18:1

    Have been using this book for teaching and for private reference for years. If only all textbook authors were as clear as Watson. Bought Kindle ver to stay current with updates.

    0  


  • 0

    Is this review useful?

    Data Management: Foundations of Data Analytics review [Book]  2018-1-8 18:1

    It's definitely passable, and some of the homework questions were really fun to think about and respond (they were written in such a lighthearted tone), but overall the book organized info in some counter-intuitive ways and was more verbose than it required to be.

    0  


  • 0

    Is this review useful?

    Data Management: Foundations of Data Analytics review [Book]  2018-1-8 18:1

    Very sporadic book. seemed like the author didn't know what too talk about and jumped around from one thing to another.

    0  


  • 0

    Is this review useful?

    Data Management: Foundations of Data Analytics review [Book]  2018-1-8 18:1

    I bought this for my DATABASE CLASS which was a amazing investment. GReat book with alot of examples

    0  


  • 0

    Is this review useful?

    Recover All Deleted data - Data Recovery review [App]  2019-2-18 13:18

    teri bhain da fuda aa ede ch

    0  


  • 0

    Is this review useful?

    Recover All Deleted data - Data Recovery review [App]  2019-2-18 13:18

    fake application

    0  


  • 0

    Is this review useful?

    Recover All Deleted data - Data Recovery review [App]  2019-2-18 13:18

    worst application

    0  


  • 0

    Is this review useful?

    Recover All Deleted data - Data Recovery review [App]  2019-2-18 13:18

    nice application

    0  


  • 0

    Is this review useful?

    Recover All Deleted data - Data Recovery review [App]  2019-2-18 13:18

    garbage 😡😡

    0  


  • 0

    Is this review useful?

    Recover All Deleted data - Data Recovery review [App]  2019-2-18 13:18

    ok

    0  


  • 0

    Is this review useful?

    Recover All Deleted data - Data Recovery review [App]  2019-2-18 13:18

    Never trust Apps with poor English and has too a lot of ads.

    0  


  • 0

    Is this review useful?

    Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analysis. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales (Data Analytics Book Series) review [Book]  2017-11-3 18:3

    I appreciate the info and the context in which it is written. This will support me to be a better analyst.

    0  


  • 0

    Is this review useful?

    Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analysis. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales (Data Analytics Book Series) review [Book]  2017-11-3 18:3

    Its a amazing book for beginners because it has very clear concepts

    0  


  • 0

    Is this review useful?

    Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analysis. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales (Data Analytics Book Series) review [Book]  2017-11-3 18:3

    This is an informative book on data analytics! This is a concise introduction and instructions about all stages of data analysis. Each subject can be expanded into a much more deep communication but the suggestions mentioned are very practical. The directions are simple to follow, and for me this is one of the best books on this subject. I definitely recommend this useful guide.

    0  


  • 0

    Is this review useful?

    Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analysis. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales (Data Analytics Book Series) review [Book]  2017-11-3 18:3

    Latest 4 days ago I got this book and I'm really impressed with the amount of hints that this tutorial book has. More time I am frustrated about my future for that my mate suggests me the book. In this book the info is organized in a logical method that’s simple to access, read and understand. It is indeed a amazing read and I highly recommend this book to everyone.

    0  


  • 0

    Is this review useful?

    Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analysis. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales (Data Analytics Book Series) review [Book]  2017-11-3 18:3

    Best book to read and learn a lot..This book given me a decent outline of the abilities and capacities needed by an info researchers. its a magnificent is is extremely valuable and useful book for novices. I recommend this book because i like this book and i hope this book will support everyone who read this.

    0  


  • 0

    Is this review useful?

    Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analysis. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales (Data Analytics Book Series) review [Book]  2017-11-3 18:3

    Its vital for me to have some info on the data analytics, even when I'm running my little business. The book may be for the Analytics professionals but it has something for the business people too, and this will change your decision making in your business.

    0  


  • 0

    Is this review useful?

    Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analysis. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales (Data Analytics Book Series) review [Book]  2017-11-3 18:3

    I chose to give it five stars because it is a amazing primer for folks who are not familiar with data analytics at all. It is a fast read and written concisely.

    0  


  • 0

    Is this review useful?

    Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analysis. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales (Data Analytics Book Series) review [Book]  2017-11-3 18:3

    However, I was expecting some really amazing contents in the latest few chapters because they were supposed to be the most necessary part of this book. Only a few pages each chap. Makes me wonder why?

    0  


  • 0

    Is this review useful?

    Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analysis. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales (Data Analytics Book Series) review [Book]  2017-11-3 18:3

    Clear and useful overview for a beginner in the domain. Thanks!

    0  


  • 0

    Is this review useful?

    SD Card Data Recover - Backup Data review [App]  2018-8-31 13:9

    Spam

    0  


  • 0

    Is this review useful?

    Branded Survey - Take a Survey, Refer and Earn review [App]  2019-2-15 13:23

    Lot of simple surveys to take and paypal checkouts...love this application

    0  


  • 0

    Is this review useful?

    SD card data Formatter - formatting sd data review [App]  2019-2-15 21:9

    don't download it nothing is un it

    0  


  • 0

    Is this review useful?

    Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython review [Book]  2017-10-30 18:1

    Such a amazing refresh. If you work with data, this belongs on your bookshelf.

    0  


  • 0

    Is this review useful?

    Data Smart: Using Data Science to Transform Information into Insight review [Book]  2018-1-8 18:1

    I would go as far as to say that the book is rst, a drop about me from the standpoint of this book. I have been an IT professional for a lot of years specializing in programming, database, and MS Office add-ons. Part of my job entails self enrichment, that is, expand my working knowledge in locations potentially necessary for my job. I chose Foreman's book to support with this task for a number of reasons: a) Data Science is a hot zone and my company does have a Data Science group, b) I have lots of data experience under my belt - I felt that it would be nice for once to obtain some useful info from the data, and c) I have a really amazing Excel background - so I figured that Foreman's approach would be excellent for me - small did I know that I would seriously add to my Excel bag of e author makes the assumptions that: a) the reader is somewhat technical, b) he knows nothing about Data Science, and c) he is relatively comfortable working in ing the book is a joy because Foreman has a cozy, chummy style. He definitely doesn't throw all the technical items at the reader rat-tat-tat machine gun style like a lot of other authors. Instead, Foreman gently introduces his subjects and then ramps up technical info carefully. This most definitely helps the learning process.Speaking of learning, by the end of the you will have learned necessary concepts in "machine learning" and I believe that you will be ready for the next step. I sure was. I found the subjects interesting and I wanted to learn more. This is where the book's only issue zone comes into play - the next step. Foreman has 3 references - one good, but minor, one terrible, and the other is inappropriate. Allow me reman recommends a free resource as a follow-on to his Forecasting Chapter. This is a amazing reference, but I believe that Forecasting is a minor subject in Data Science, unless, of course, Forecasting becomes your reman's main reference is: "Data Mining with R" by Luis Torgo. Foreman recommends this as the next step after his book.I tried to read this several times, but couldn't. It certainly wasn't my next e other reference, "The Elements of Statistical Learning" by Trevor Hastie, et. al, is totally inappropriate for Data Science newbies. You can checkout the Amazon reviews for this book and you'll see that you need a beautiful serious background in statistics to obtain anything out of that reference. In fact, the author Hastie says as much in his next book "An Introduction to Statistical Learning- with Applications in R". This is the appropriate next step, but I'll obtain to that in a are my recommendations:A. Read Foreman's book and follow along with him in working through the Excel spreadsheets. This is a first step in getting comfortable with Machine Learning.B. Take the Coursera courses: 1) Machine Learning Foundations: A Case Study Approach, and 2) Machine Learning: Regression. The courses are free unless you wish completion certificates, in which case there is nominal cost.C. Now you are ready for: An Introduction to Statistical Learning: with Applications in R (Springer Texts in Statistics) This book is also available for free by the authors - check online.

    0  


  • 0

    Is this review useful?

    Data Smart: Using Data Science to Transform Information into Insight review [Book]  2018-1-8 18:1

    Disclaimer: I served as a paid technical editor for Data Smart. I am not affiliated with the publisher, but I did keep a little fee for double-checking the book's mathematical content before it went to press. I also went to elementary school with the author. So as you read the rest of the review, hold in mind that this reviewer's judgment could be clouded by my lifelong allegiance to Lookout Mountain Elementary School, as well as the Scarface-esque pile of one dollar bills currently sitting on my kitchen table.Anyway, books about "Data" seem to fit into one of the following categories:* Extremely technical gradate-level mathematics books with lots of Greek letters and summation signs* Pie-in-the-sky business bestsellers about how "Data" is going to revolutionize the globe as we know it. (I call these "Moneyball" books)* Technical books about the hottest fresh "Big Data" technology such as R and HadoopData Intelligent is none of these. Unlike "Moneyball" books, Data Intelligent includes enough practical info to actually begin performing analyses. Unlike most textbooks, it doesn't obtain bogged down in mathematical notation. And unlike books about R or the distributed data blah-blah du jour, all the examples use amazing old Microsoft Excel. It's geared toward competent analysts who are comfortable with Excel and aren't afraid of thinking about issues in a mathematical way. It's goal isn't to "revolutionize" your business with million-dollar software, but rather to create incremental improvements to processes with accessible analytic techniques.I don't work at a huge company, so I can't attest to the number of dollars your company will save by applying the book's methods. But I can attest that the author makes difficult mathematical concepts accessible with his quirky sense of humor and bonus for metaphor. For example, I previously had not been exposed to the nitty-gritty of clustering techniques. After a couple of hours with the clustering chapters, which contain illuminating diagrams and spreadsheet formulas, I felt like I had a amazing handle on the concepts, and would feel comfortable implementing the ideas in Excel -- or any other language, for that matter.What I like most about the book is that it doesn't test to wave a magic data wand to cure all of your company's ills. Instead it focuses on a few locations where data and analytic techniques can deliver a concrete benefit, and gives you just enough to obtain started. In particular:* Optimization techniques (Ch. 4) can systematically reduce the cost of manufacturing inputs* Clustering techniques (Ch. 2 and 5) can deliver insights into customer behavior* Predictive techniques (Ch. 3, 6, and 7) can increase margins with better predictions of uncertain outcomes* Forecasting techniques (Ch. 8) can reduce waste with better demand planningIt may take some creativity to figure out how to apply the methods to your own business processes, but all of the techniques are "tried and true" in the sense of being widely deployed at huge companies with huge analytics budgets and squads of Ph.D.'s on staff. This book's contribution is to create these techniques available to anyone with a small background in applied mathematics and a copy of Excel. For that reason, despite the absence of glitter and/or Jack Welch on the book's cover, I think Data Intelligent is an necessary business book.I had a few criticisms of the book as I was reading drafts, but almost all of them were addressed before the final revision. For the sake of completeness, I'll tell you what they were. Some of the chapters ran on a bit long, but these have been split up into manageable pieces. The Optimization chapter is a bit of a doozie, and used to be at the very beginning, but the reader can now "warm up" with some easier chapters on clustering and easy Bayesian techniques. The Regression chapter originally didn't discuss Receiver Operating Characteristic curves, which are necessary for evaluating predictive models visually, but now ROC curves are y one true criticism from me remains: I would have liked to see more on quantile regression, which is only mentioned in passing. It's a amazing technique for dealing with outlier-heavy data. The book by Koenker has amazing but highly mathematical coverage, and I would have loved to see this topic given the Foreman treatment. But, you can't have everything, and I suppose John needs to leave some material for Data Intelligent 2: The Spreadsheet of sum, Data Intelligent is a well-written and engaging tutorial to getting fresh insights from data using familiar tools. The techniques aren't really cutting-edge -- in fact, most have been around for decades -- but to my knowledge this is the first time they've been presented in a method that Excel-slinging business analysts can apply the methods without needing her own squad of operations researchers and data scientists. If you're not sure whether the book's sophistication is on par with your own skills, you can download a complete sample chapter (as well as example spreadsheets) from the author's latest thing: unlike a lot of books with a technical bent, the prose is engaging and extremely clear. I think this can be traced to John's childhood. When John misbehaved, his father (who is a professor of English) would punish John by forcing him to read a novel by Charles Dickens. Minor infractions resulted in A Christmas Carol being meted out, and when he was really poor he had to read Amazing Expectations. This is a real story which you should ask John about if you see him at a book-signing event.

    0  


  • 0

    Is this review useful?

    Data Smart: Using Data Science to Transform Information into Insight review [Book]  2018-1-8 18:1

    When I began to read the introduction for this book, after receiving it as a bonus - I was a bit disheartened. I am not one of personas listed in the 'Who Are You" section - a CEO or VP of an online startup, a beginner BI analyst. Instead, I am a software developer specializing in data visualization and data analysis.Furthermore, Excel is far from my preferred research tool of choice. I like code instead of screenshots. Python, Ruby, and R are where I turn when I wish to look at data.*Even* with this mismatch of intended audience, I found myself engrossed in this book, reading it cover to cover in a few Intelligent is a unbelievable resource. The use of Excel as a basic means for exploring data science concepts is surprisingly effective. It strips away all the code magic. You can't rely on SciKit-learn, or Weka, or even proper functions when all you have are cells and stead, it provides a method for John Foreman to break down these complex concepts into the fundamental components that create them tick. You begin to see the patterns between seemingly disparate technologies that are actually built off the same few bits of logic. Things begin to e writing and real-world situations are really what create it fun and worth reading through and enjoying the ride. John's style hits the sweet spot between clarity and comical. Each chapter is well scoped. You understand the rational behind why someone might wish to use the particular tool being described to solve the issue at hand. The whimsy and flare added by the author moves the plot along at a amazing pace. The issues are easy enough to wrap your head around - but not toys. The datasets generated for this book must have taken a while to curate. The book is really fun to read.I think for me this book provides a amazing reminder of the landscape of data science tools, as well as a story-telling process to describe and relate these tools to non-programmy non-programmers.Even if you aren't a startup CEO... yet - this book is worth having on your shelf. Check it out today!

    0  


  • 0

    Is this review useful?

    Data Smart: Using Data Science to Transform Information into Insight review [Book]  2018-1-8 18:1

    John Foreman has an entertaining and thorough writing style that makes this a amazing book for using Excel to think through several essential, primary data inference methods. While Excel is not the best tool for data science it is very widely used software; he does an adequate job making the inferential methods explained in Excel to be understood and then, at the end of the book, explains how to use the more powerful, free R app (a standard in data science field). (Though if one wants to learn and use R this book is too basic.)What is nice about him using Excel (with data sets that are also available for download from the publishers site) is that all the additional steps Excel requires to carry out this methods is that it also helps the reader to better grasp the reasoning of these methods along the way. That he peppers the text with a humorous style also makes this a rare treasure for data science introductory books.

    0  


  • 0

    Is this review useful?

    Data Smart: Using Data Science to Transform Information into Insight review [Book]  2018-1-8 18:1

    This is a very various kind of data science book, and so far that's a amazing the author explains in the cover matter and the introductions, you can solve a lot of true business issues with data analysis and you can do it with a strong spreadsheet. I learned some tricks with Excel from the first chapter I'm still getting a handle on, and I've been using that app for quite a few years.I'm hopeful that his model will work better for me and that I will learn some amazing analyses, and then perhaps some R ... in that order.

    0  


  • 0

    Is this review useful?

    Data Smart: Using Data Science to Transform Information into Insight review [Book]  2018-1-8 18:1

    One of the only books I brought on my latest overseas deployment. I read the book then watched Sneakers. Disclaimer: I am often referred to as "nerdy" by other troops guys.I think this book is best suited for someone who has intermediate to advanced Excel skills, Is the person in the office everyone looks to when they need to solve issues and likes some statistics (but I guess that is unnecessary because everyone likes statistics.)

    0  


  • 0

    Is this review useful?

    Data Smart: Using Data Science to Transform Information into Insight review [Book]  2018-1-8 18:1

    If your risky with pivot tables, this will take you to the next level for sure. Nicely written and simple to understand.

    0  


  • 0

    Is this review useful?

    Data Smart: Using Data Science to Transform Information into Insight review [Book]  2018-1-8 18:1

    Full 5 ere is no reason why you should not buy this book, if you even are remotely connected with things like 'Data Science', 'Analytics', 'Forecasting' etc.I enjoyed all chapters and especially Chapters 4 (Optimization), 6 (Regression), 8 (Forecasting).Seriously buy this book, 's very simple read, and yet the author does not merely skimp necessary concepts, so you obtain best of both worlds, a amazing solid foundation and practical thing I like is for 90% of the time, the topic matter and the spreadsheet diagrams are on the same set of pages, so you don't have to go back and forth between pages to sync text and images.

    0  


  • 0

    Is this review useful?

    Data Smart: Using Data Science to Transform Information into Insight review [Book]  2018-1-8 18:1

    I am really glad that John Foreman wrote this book. There are so a lot of tools here that I can use in practical situations! I do have two issues. First, since the book was written, a free tool has been created, which is an add in for Excel that does logistic regression. It is called XLminer and there is a video showing how to download it into Excel here:[...]My second problem is that I want he would write a sequel to this first book covering more fresh data analysis tools! I really like the step by step instructions in this book!

    0  


  • 0

    Is this review useful?

    Data Smart: Using Data Science to Transform Information into Insight review [Book]  2018-1-8 18:1

    Instead of going through complex tools to begin anaylzing data, this book explains all the essentials you need to be a Data Scientist using the master tool of all tools: Excel!I consider my self a black belt Excel user. I used it in finance, accounting, software engineering, proposal writing, you name it! but this book surprised me that there is still more under the hood when it comes to Data Science.

    0  


  • 0

    Is this review useful?

    Data Science from Scratch: Practical Guide with Python (Data Sciences) review [Book]  2018-4-1 18:1

    This is a nicely written book for beginners who wish to learn about data science. When I say beginners I mean a intelligent high school upperclassman. The writing is not mathematically challenging and the examples are simple to follow.

    0  


  • 0

    Is this review useful?

    Data Science from Scratch: Practical Guide with Python (Data Sciences) review [Book]  2018-4-1 18:1

    The book has unbelievable overview to learn Python programming. If you read the whole book, you will be benefited in a lot of ways. Hope you will be able to understand everything easily.

    0  


  • 0

    Is this review useful?

    Data Science from Scratch: Practical Guide with Python (Data Sciences) review [Book]  2018-4-1 18:1

    From the beginning to the end this book about learning data science has given the best knowledge and shared with us. I found the simple steps learning so helpful. Learning data science is a challenging task but these book has created the learning enjoyable and easy, I loved learning evaluation it has given.

    0  


  • 0

    Is this review useful?

    Data Science from Scratch: Practical Guide with Python (Data Sciences) review [Book]  2018-4-1 18:1

    Data science is a broad field, very strong for decision making . This book provides both the theoretical explanation and practical knowledge of the science.. Recommended

    0  


  • 0

    Is this review useful?

    Data Science from Scratch: Practical Guide with Python (Data Sciences) review [Book]  2018-4-1 18:1

    The book is an amazing refresher for primary statistics. I particularly like the method that the book outlines the connections between data science and statistics.

    0  


  • 0

    Is this review useful?

    Data Science from Scratch: Practical Guide with Python (Data Sciences) review [Book]  2018-4-1 18:1

    This book giving practical tutorial for data science. Amazing informative book. Learning content provided. Appreciating stuff. Providing proven process.

    0  


  • 0

    Is this review useful?

    Data Science from Scratch: Practical Guide with Python (Data Sciences) review [Book]  2018-4-1 18:1

    This is a right book to improve my skills in Data Science. It helps me to refresh some command, technique and use of data technology.

    0  


  • 0

    Is this review useful?

    Data Science from Scratch: Practical Guide with Python (Data Sciences) review [Book]  2018-4-1 18:1

    An interesting read to learn about python data science, the book is well written and simple to understand and cover photo is also beautiful thanks.

    0  


  • 0

    Is this review useful?

    Data Science from Scratch: Practical Guide with Python (Data Sciences) review [Book]  2018-4-1 18:1

    It's very amazing for someone who wants to begin in the field by actually just doing stuff, but not if you wanna understand all info behind what you are doing.

    0  


  • 0

    Is this review useful?

    Data Science from Scratch: Practical Guide with Python (Data Sciences) review [Book]  2018-4-1 18:1

    I highly recommended books for beginners ! The writing is clear, simple to read and to e breadth of info covered if quite wide. The choice to begin with python and data science concepts was e author has obviously a powerful grasp of a lot of varied fields within data science, and that contains all machine learning algorithms and python coding.If you wish beginners book in data science t, you can't go wrong with this one. Highly recommended!

    0  


  • 0

    Is this review useful?

    R for Data Science: Import, Tidy, Transform, Visualize, and Model Data review [Book]  2017-10-14 22:23

    Wickham and Grolemund have produced an perfect book that would support a beginning R user become very efficient in explanatory analysis. Unsurprisingly the approach that they expound utilises the "hadleyverse" a collection of packages (ggplot2 for visualisation, tidyr for reshaping, dplyr for selecting and filtering, purrr for functional programming, broom for linear models etc) that dramatically speed up most of the common steps involved in an analysis. One benefit of Wickham's involvement in these packages has been a coherent philosophy that sits behind them. It can be a small tricky when learning this philosophy, but the long term benefits are e book is broken up into a number of sections that effectively builds up the ability to ingest, transform, visualise and model datasets. A amazing portion of the book is available in an online version, to give you a taste of how it is written. A lot of have been following it as it was written. I have passed on copies of the book to a number of colleagues who were just starting out and the response has been uniformly positive. In my own case I was familiar with some of the these packages; ggplot2, dplyr, tidyr, but found the book taught me purrr and how to better use the packages bably my two largest caveats to readers are that there are situations where packages from outside the "hadleyverse" maybe required. The authors do a amazing job of pointing this out, but it does pay in my experience to know le and lattice for example. Both because they can occasionally fit a issue better but also because you inevitably come across other people's code where these packages are used. The other caveat is that the modelling is a small rudimentary. Most of the examples are just fitting independent regression models, whereas it seems to me that a hierarchical model would be a better fit. Still these are little things and it would be silly to expect a single book to cover all of these short this is the book I would give to someone who was keen to learn about how to use R for data science. It reads really well building up the various components whilst still being a valuable reference if you just need a reminder of a particular pack (what is the difference between tibbles and data frames again?). Even though a amazing portion of the book is available online, it is well worth it to have the full thing on your bookshelf (digital or otherwise). On a broader note with Max Kuhn (author of the perfect "Applied Predictive Modelling" with Kjell Johnson) joining Wickham and Grolemund at RStudio, it is a amazing time to begin your R journey.

    0  


  • 0

    Is this review useful?

    R for Data Science: Import, Tidy, Transform, Visualize, and Model Data review [Book]  2017-10-14 22:23

    Perfect introduction to the "tidy" approach to use R. It has bundled several R packages and made a user interface to R and particularly RStudio that makes is much easier to use R for statistics, graphing, and data and text mining. Strongly recommend fresh R users to adopt this approach.

    0  


  • 0

    Is this review useful?

    R for Data Science: Import, Tidy, Transform, Visualize, and Model Data review [Book]  2017-10-14 22:23

    Useful book for especially for data visualization. They give you a amazing trunk of knowledge in the ggplot2, tidyverse, and modelr packages. Would recommend for anyone starting out. Learning how to manipulate data is a large and often underrated part of machine learning, is useful and will be useful until the end of time or until data takes on a various form. Learning how to set up a primary system for modeling is invaluable, and will not likely ever be outdated, just updated. The book does much better at teaching data visualization than modeling. Not limited to ggplot2, tidyverse, and modelr but certainly massive in them.

    0  


  • 0

    Is this review useful?

    R for Data Science: Import, Tidy, Transform, Visualize, and Model Data review [Book]  2017-10-14 22:23

    A amazing introduction to the Tidyverse. Coming from SAS programming with only a small R experience this provided a amazing introduction to me to using R and the Tidyverse in a consistent manner that is focused on getting you programming and giving you useful tools.

    0  


  • 0

    Is this review useful?

    R for Data Science: Import, Tidy, Transform, Visualize, and Model Data review [Book]  2017-10-14 22:23

    by far best delve into dplyr

    0  


  • 0

    Is this review useful?

    R for Data Science: Import, Tidy, Transform, Visualize, and Model Data review [Book]  2017-10-14 22:23

    Amazing

    0  


  • 0

    Is this review useful?

    R for Data Science: Import, Tidy, Transform, Visualize, and Model Data review [Book]  2017-10-14 22:23

    If I can only choose one data science book to read, then I will choose R for data science. It teach your the elegant method to do data science.

    0  


  • 0

    Is this review useful?

    R for Data Science: Import, Tidy, Transform, Visualize, and Model Data review [Book]  2017-10-14 22:23

    Makes R easier to use. I am, overall, a fan of Hadley Wickham's work, and this doesn't disappoint.

    0  


  • 0

    Is this review useful?

    R for Data Science: Import, Tidy, Transform, Visualize, and Model Data review [Book]  2017-10-14 22:23

    Fantastic, amazing intro and builds on each concept.

    0  


  • 0

    Is this review useful?

    R for Data Science: Import, Tidy, Transform, Visualize, and Model Data review [Book]  2017-10-14 22:23

    amazing book

    0  


  • 0

    Is this review useful?

    Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are review [Book]  2017-10-14 18:4

    The primary thesis of "Everybody Lies" is that online data on human behavior, including Google searches and data from Facebook, shopping and pornographic sites, can reveal much about what we really think than data from surveys in which people might be too embarrassed to tell the truth. In our unguarded moments, when we are alone and searching Google in the privacy of our homes, we are much more likely to divulge our innermost desires. The premise is that truly understanding human behavior by method of psychology or neuroscience is too complicated right now, so it's much better to simply bypass that kind of understanding and look at what the numbers are telling us in terms of what people's online behavior. In doing this the author looks at a remarkable dozens of online sources and studies by leading researchers, and one must congratulate him for the diversity and depth of material he has plumbed.What has allowed us to access this pool of unguarded opinions and truckloads of data concerning human behavior is the Internet and the tools of "big" data. As the author puts it, this data is not just "big" but also "new", which means that the kind of data we can access is also quite various from what we are used to; in his words, we live in a globe where every sneeze, cough, internet purchase, political opinion, and evening run can be considered "data". This makes it possible to try hypotheses that we could not have tested before. For instance, the author gives the example of testing Freud's Oedipus Complex through accessing pornographic data which indicates a measurable interest in incest. Generally speaking there is quite an emphasis on exploring human sexuality in the book, partly because sexuality is one of those aspects of our life that we want to hide the most and are also pruriently interested in, and partly because investigating this data through Google searches and pornographic websites reveals some rather bizarre sexual preference that are also sometimes specific to one country or another. This is a somewhat fun use of data exploration can both reveal the obvious as well as throw up unexpected observations. A more serious use of data tools concerns political opinions. Based on Google searches in particular states, the author shows how racism (as indicated by racist Google searches) was a basic indicator of which states voted for Obama in the 2008 election and Trump in the 2016 election. That's possibly an obvious conclusion, at least in retrospect. A more counterintuitive conclusion is that the racism divide does not seem to map neatly on the urban-rural divide or the North-South divide, but rather on the East-West divide; people seem to be searching much more for explicitly racist things in the East compared to the West. There is also an interesting survey of gay people in more and less tolerant states which concludes that you are as likely to search gay people in both parts of the country. Another interesting section of the book talked about how calls for peace by politicians after terrorist attacks actually lead to more rather than less xenophobic Google searches; this is accompanied by a section that tips at how the trends can be potentially reversed if various words are used in political speeches. There is also an interesting discussion of how the belief that newspaper political leanings drive customer political preferences gets it exactly backward; the data shows that customer political preferences shape what newspapers print, so effectively they are doing nothing various from any other customer-focused, profit making e basic tool for doing all this data analysis is correlation or regression analysis, where you look at online searches and test to search correlations between certain terms and factors like geographic location, gender, ethnicity. One hopes that one has separated the most necessary correlated variable and has eliminated other potentially necessary ere are dozens of other amusing and informative studies - sometimes the author's own but more often other people's - that reveal human desires and behavior across a wide swathe of fields, including politics, dating, sports, education, shopping and sexuality. There's plenty of potentially useful material in these studies. For instance, some of the data that indicates gaps in educational or social attainment in various parts of the country are immediately actionable in principle. Google searches have also been used to hold track of flu and other disease epidemics. Sometimes finding correlations is financially lucrative; there is a story about how a horse expert found that success in horse races seems to correlate with one factor more than any other: the size of the left ventricle. Another study isolated the impact of the early growing season on the quality of wines. There is no doubt that financial firms, supermarkets, newspapers, hospitals and online purveyors of everything from pornography to peanuts are going to hold a close eye on this data to maximize their reach and nerally speaking I enjoyed "Everybody Lies"; for the scope of the material, the easy-going style and some of the counterintuitive observations it reveals. My main reservation about the book is that I think the author overstates his case and sometimes sounds a small too breathless about the amazing changes these tools are going to bring. More than once he uses the term "revolutionary" in describing these data tools, but I am much more suspicious of their ultimate utility. Firstly, data does not equal knowledge; rather, it is the raw material for knowledge. As the author himself acknowledges, understanding correlation is not the same as understanding causation, and it's in very few cases that a real causal relationship between people's Google searches and their real nature can be established. Part of the reason I think this method is because I don't believe that a person's Google find is as reflective of their innermost desires as the book seems to think, so what a person truly believes may go method beyond their online behavior. Consider the studies revealing people's sexual preferences for instance; how a lot of of them point to trivial idiosyncrasies and how a lot of are indicative of some deeper truth about human brains? The tools alone cannot draw this distinction. At the end of the day you could thus end up with a lot of data (including a lot of noise), but teasing apart the useful data points from the red herrings is a completely various matter. In this sense, looking at Google searches and other info can be a reductionist and simplistic condly, it's usually quite hard to control for all possible variables that may reflect a Google search; for instance in concluding that racism contributes the most to a particular political behavior, it's very hard to tease out all other factors that also may do so, especially when you are talking about a heterogeneous collection of human beings. How can you know that you have corrected for every possible factor? Thirdly and finally, the "science" part of "data science" still lacks rigor in my opinion. For instance, a lot of the conclusions the book talks about are based on single studies which don't seem to be repeated. In some cases the sample sizes are large, but in other cases they are small. Plus, people's opinions can change over time, so it's necessary to pick the right time window in which to do the study. All this points to amazing responsibility on the part of data scientists to create sure that their results are rigorous and not too simplistic, before they are taken up by both politicians and the general public as blunt instruments to change social policies. This responsibility increases especially as these approaches become more widespread and cheaper to use, especially in the hands of non-specialists. When you are in possession of a hammer, everything starts looking like a nsidering all these caveats, I thus search tools like those described in this volume to be the starting points for understanding human behavior, rather than direct determinants of human behavior. The tools themselves can tell you what they can be used for, not necessarily what issues would benefit the most from their application. The a lot of interesting studies in this book certainly respond the "what" quite well, but most of them are still quite far from answering the "how" and especially the "why". They point out the path to the door, but don't necessarily tell us which door to open. And they can be especially impoverished in illuminating what lies beyond; for that only a real understanding of the human mind will pave the way.

    0  


  • 0

    Is this review useful?

    Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are review [Book]  2017-10-14 18:4

    I read it in two days. It is an simple and fun read even for the general reader.“Everybody Lies” is a fascinating dive into the globe of “Big Data”. The core premise of the book is that by mining huge data sets we can respond questions more accurately than through other methods. Behavioral and psychological questions can be addressed without the filter of a poll or questionnaire, where “everybody lies”. Thus, in theory, we capture a more accurate representation of people’s true prejudices and desires through huge data searches than through th Stephens-Davidowitz uses quirky and often humorous examples to present the power of huge data. One example from the book revealed that I was one of the 7% who finished “Thinking, Quick and Slow” (I am not sure whether that is a amazing or poor thing).The data is the data, but the interpretation is subjective. My concern is that the subjective conclusions drawn from the data will be presented as fact rather than what they are – subjective interpretations of the data (however statistically significant). As such, there is a danger that such info will be misused. We still need to be cautious in determining the meaning of the th Stephens-Davidowitz brings the subject to life with terrific story telling about a wide number of subjects. The author has performed a amazing service by making this very necessary subject comprehensible to “the rest of us”.

    0  


  • 0

    Is this review useful?

    Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are review [Book]  2017-10-14 18:4

    A small long on commentary but simple read through. There is a lot of location left unexplored which is the frustrating part. The fact that everybody lies is painfully obvious. I hope pulling back the curtain eventually helps to improve our bullpucky addled world.Enjoy that beer, Seth.

    0  


  • 0

    Is this review useful?

    Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are review [Book]  2017-10-14 18:4

    This was one of the entertaining books I've read in quite a while. In diving deeply into find history data, Stephens-Davidowitz not only reveals that people's actions trump their beliefs or words, but he presents it in such a disturbingly hilarious method that I go through the entire book in less than two days. I found myself bookmarking pages for reference later, something I very rarely do when reading. Not only would I recommend this book to everyone, but I will surely be re-reading this again sometime soon.

    0  


  • 0

    Is this review useful?

    Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are review [Book]  2017-10-14 18:4

    This is an perfect book about huge data research. It starts the conversation about what we can learn, and what we can't, from databases of digitized data. Without a doubt, this is an necessary book to read for anyone who uses a computer and/or does research. It will create your think twice about the info that we leave out and about on the Internet. At the very least, this book is full of perfect conversation starters for any nerdy parties you might attend.

    0  


  • 0

    Is this review useful?

    Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are review [Book]  2017-10-14 18:4

    Well written description of how huge data is already changing our lives even if we don't know it, for amazing and bad. The book is simple to read, understand, and will change the method you see the electronic world, as well as then growing globe of data science.

    0  


  • 0

    Is this review useful?

    Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are review [Book]  2017-10-14 18:4

    The book "Everybody Lies: Huge Data, Fresh Data, and What the Internet Can Tell Us About Who..." is an perfect approximation to this fresh globe of the Huge Data through the enormous amount of info that ourself deposit in the social networks. The reading is enjoyable and is a page turner. Highly recommend.

    0  


  • 0

    Is this review useful?

    Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are review [Book]  2017-10-14 18:4

    What can I say? I loved this book! If you have any curiosity about how the globe works or why people do the things that they do, you will love this book too. Who does not wish to be able to create accurate predictions about the behavior of others? Seth Stephens-Davidowitz introduces us to the emerging scientific field of data science and how it can be used to respond questions that it have heretofore been unanswerable. He does not shy away from trying to respond more socially difficult questions. But he does it in a very entertaining way. Think of it as Moneyball for not only baseball but literally everything else in the world.

    0  


  • 0

    Is this review useful?

    Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are review [Book]  2017-10-14 18:4

    Well written, very timely, rich with anecdotes, and covers the Huge Data's march through the current technology climate. Gave me anecdotes to intersperse my own presentations with, for cogent, persuasive arguments

    0  


  • 0

    Is this review useful?

    Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are review [Book]  2017-10-14 18:4

    A surprisingly insightful and often amusing examination of the Internet data explosion. Yes, it's a small wonky but you don't have to be statistician or sociologist to have fun this book.

    0  


  • 0

    Is this review useful?

    Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career (Confident Series) review [Book]  2018-2-1 18:1

    The singularity is near and Kirill know whos’s your data!This book is probably part of the Seldon plan. This pages are the fastest route for a valuable career and a bit more. We are in the middle of something because the artificial intelligence is the latest development of mankind. The AI code will be written by a data scientist. Probably this will be the latest job on Earth :)If you choose this path I Highly recommended this book!Happy reading!

    0  


  • 0

    Is this review useful?

    Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career (Confident Series) review [Book]  2018-2-1 18:1

    This book explains Data Science with the lens of a career strategy. The author, Kirill Eremenko, has made a lot of of the most famous and highly rated data science online courses and has a very famous podcast focused on careers in data science. I found in the book a lot of wisdom distilled from the author's own consulting career as well as from hundreds of hours of podcasts interviewing a lot of successful data scientists. The format of this book lends itself for an audiobook even though it provides a lot of info about complex concepts, data analysis methods, and tools. The book presents a very refreshing and optimistic future for those looking into entering the field or using it within their rt 1: It first introduces data, exposes its commonness, how it is being used by companies in the background, its exponentially growing nature, exposes how data scientists use and show data, and then provides tip on how somebody from outside the industry can approach entering the rt 2: The book introduces “the data science process”, including wisdom on framing the question within context and scope, then tactics and tools for recognizing, preparing, cleaning data, and finally analyzing it to produce relevant answers. It provides an perfect overview of the methods for analyzing data including statistical, machine learning, and artificial intelligence. It also presents examples and guidance providing intuition about how these methods provide answers and apply to various data science rt 3. Provides closure to the “data science process”, by describing visualization concepts while providing attractive examples and insight into effective tactics for presenting results. The latest chapter then imparts tactical and strategic intelligence in entering the data science field regardless of the industry. As with the podcasts, this book somehow manages to contain private growth wisdom very relevant to data science.

    0  


  • 0

    Is this review useful?

    Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career (Confident Series) review [Book]  2018-2-1 18:1

    As always, Kirill aims at communicating simply, clearly and effectively,and with this book he succeeds. I think he offers a huge picture understanding of what it means to work indata science today, and augments that perspective with info from his own e combination ends up being not just informative and useful, but also entertaining dueto his natural style of connecting with an the end of the book, you will not magically be an "expert" in the subjects he covers(such as classification, logical regression, clustering and data visualization to name a few) butyou will have a amazing introduction to the current concepts and vocabulary of data is is an perfect book to quickly gain confidence in understanding data science andwhat is event with it today, especially in business settings.

    0  


  • 0

    Is this review useful?

    Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career (Confident Series) review [Book]  2018-2-1 18:1

    Kirill is always such an awesome storyteller. I found about Kirill by researching courses on Udemy on R, SQL, Python, and basically anything Data Science related. His podcast “Superdatascience” and his LinkedIn profile allowed me to understand more about how Data Science and how it is actively changing industries and the World. I learned what kind of skills that are needed and in demand, and how to communicate better with stakeholders on the importance of data is book is a amazing resource for a beginner, someone who is passionate about data science. This book does not go into info on the high-level coding aspects of data science or elaborate on the various models that data scientist uses to tackle issues in their respective fields. Its intention is to inform and make a solid foundation for the introduction into Data Science. This book feels like a textbook and an autobiography of data scientist, I believe this adds a more private touch. It is relatable and adds value to the book. Examples contain true case studies or issues Kirill and other data scientists faced in their career, how they approached it and the solutions they deployed to solve them.I had fun reading this book. It created me more passionate about learning more about Data Science and how to be creative in problem-solving. This book will point you in the right direction. Kirill is always such a passionate guy and you can tell that he place a lot of hard work into this book. I highly recommend this book to anyone seeking info or a career in Data ScienceCheers, and satisfied coding

    0  


  • 0

    Is this review useful?

    Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career (Confident Series) review [Book]  2018-2-1 18:1

    I first learned about Kirill Eremenko when searching for a course on Data Visualization/Tableau that provided a more hands-on learning opportunity than the one I took on Coursera. I knew right away that Kirill had a unique bonus for explaining and teaching things in a practical, methodical, and down-to-earth manner. Place another way, he really does “make the complex simple”. After I started his Experfy course, I looked for other opportunities to learn data science and ran across his SuperDataScience podcast. Its awesome! So when I had a possibility to read his book, I knew it would be great. Kirill has a knack for story telling and making things relatable. He draws you in by talking about all of the ways data touches our lives and how we as individuals also influence that data. If you are passionate about data science and have been intimidated by some of the courses and wish to obtain down to the brass tacks, you need to read this book. Kirill is an inspiration. Looking forward to continuing my data science journey through some of the courses he offers on Udemy.

    0  


  • 0

    Is this review useful?

    Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career (Confident Series) review [Book]  2018-2-1 18:1

    Perfect Book 10 out of 's a must buy for anyone starting on Data Science.What I liked most : The straight forward content, trimmed to right amount of info on all stages of Data (Extraction, Transformation, Preparation, Applying Machine Learning Techniques and Story Telling).What i would like to see more : More of visuals (Charts, graphs, cartoons) and in colors, related to your presentations in Super Data Science ppts.Overall - Amazing effort and amazing book!

    0  


  • 0

    Is this review useful?

    Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career (Confident Series) review [Book]  2018-2-1 18:1

    This is by far the most comprehensive book I have encountered in my experience when it comes to begin a career in data science. Kirill is not just an awesome data science coach, speaker and a fabulous person but through this book he has also proved how amazing of a writer he is. I carry this book everywhere and review my concepts is book is probably my data science bible!

    0  


  • 0

    Is this review useful?

    Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career (Confident Series) review [Book]  2018-2-1 18:1

    Whether or not you are fresh to the field of data science and analytics, this is definitely a must read. Kirill starts with a powerful set up the larger societal context and role of data science - data is relevant to everyone. I also really like his tip on how to handle situations at work when a lot of people come to you for support with their data analytics needs. Having been there myself, and being a person who naturally gravitates toward helping people, it can be difficult to set boundaries or figure out how to say "no" in a method that doesn't cause you issues later. I really like his alternative approach of leveraging your expertise in the workplace by taking an advisory approach and helping empower those around you who don't have the direct skills, to work on their own analysis and understand how to formulate their questions in a more robust st but not least, Kirill devotes two entire sections to data visualization. I know this may not be appealing to some people who are highly technical and are really into the development (programming) aspects of data science. However, data visualization is an extremely critical knowledge zone to have if you are supporting others or presenting your findings. This book runs through a series of data visualizations, both easy and complex types and explains simply and concisely what each one is for.Whether you are looking to obtain your feet wet and gain some hands-on experience or are a seasoned professional, this book is a definite read. He also contains access to his Data Science A-Z Course as part of this book and the two (book and online course) are woven together quite nicely. Thank you for making these subjects approachable! It's a much required change in the industry.

    0  


  • 0

    Is this review useful?

    Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career (Confident Series) review [Book]  2018-2-1 18:1

    In Confident data skills, Kirill does a amazing work on summarizing the various steps of end-to-end data science ere are series of very nice and short quotes throughout the book that will definitely support the reader to hold the info easily on her head. Note that even the best book would not be useful, would this point to being e book focuses on three main parts of the data science process: Data gathering and preprocessing, data analysis (special focus on the primary machine learning methods, giving very nice and friendly intuitions on them) and presentation/visualization. Kirill does a amazing job on stressing in multiple times what he considers are the most necessary steps, with unique emphasis on how necessary is for a data scientist to create sure that her findings obtain to the right people.If you are looking for a coding or technical book, this is not the case. This book is amazing for getting intuition on data science, and not only for completely newbies on the matter. I have been dealing for about a year and a half (only half year as my job position) now with data science and I search the book very refreshing for myself. For the reader interested on machine learning, the intuition on the most primary machine learning algorithms done in this book is very friendly and simple to rill also adds several own experiences and also experiences from people that has passed by its Super Data Science podcast, therefore making the reader invest on other private challenges awakening the desire to search fresh challenges while reading the book. I have to say that I see myself reflected in several of the private experiences shared by Kirill on the book, and I am quite sure that this will happen to more than one MMARY: Either if you are a newbie or an experienced data scientist and you wish to learn or refresh your method of understanding this exciting technology, in Confident Data skills you will search a very simple (non-technical) text that will tutorial you through the whole data science process. Furthermore, this book is very powerful on private experiences from experienced data sciences and I search it highly motivational on keeping doing my method on data science.I was familiarized with some of the book experiences by hearing them before on Kirill's podcast, what gives a tip on that this book has been carefully written by its author.

    0  


  • 0

    Is this review useful?

    Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career (Confident Series) review [Book]  2018-2-1 18:1

    Kirill has a talent for making the complex simple. He does this regularly through his online courses and podcasts. Now he adds to this body of work Confident Data Skills. I’m writing this from the perspective of a midlife career changer. This book will not create you a data scientist, that is not its purpose. However, if you are looking for a fresh direction in your career or thinking about what to do for your career, this is a book to e author touches on the techniques of analysis, but that gets just enough of a treatment so the reader can understand the dozens of tools that are used. He invests a amazing portion of the book on helping the reader to understand the necessary of data preparation, correctly framing the issue and presenting the information.I believe data science to be about asking and answering amazing questions. Helping others to understand the results, the causes and what future actions could be taken are a huge part of making a true contribution to your organization. Kirill hits all these points in his typical simple to understand way.If you have been doing this kind of work for years, I would still consider this book as it could create the excellent bonus for someone in your life. I will be sending copies to a couple of my collage age nephews that are squarely in this target shop for this kind of information.

    0  


  • 0

    Is this review useful?

    Deep Learning: A Technical Approach To Artificial Intelligence For Beginners (Machine Learning, Neural Networks, Decision Trees, Neural Networks, Artificial Intelligence, Data Science, Big Data) review [Book]  2018-3-19 18:1

    Most teachers say they wish to support students develop reasoning and problem-solving skills. This book provides guidance on how to accomplish this goal. Removed are lectures, memorization, and math problems. Instead, students are taught to take what they recognize about the natural globe around them and apply it to the discipline of physics. It helped me to better understand the fundamentals and was extremely clear and simple to comprehend. Deep Learning is a subfield of machine learning concerned with algorithms inspired by the structure and function of the brain called artificial neural networks. It serves as both an education and a reference book.

    0  


  • 0

    Is this review useful?

    Deep Learning: A Technical Approach To Artificial Intelligence For Beginners (Machine Learning, Neural Networks, Decision Trees, Neural Networks, Artificial Intelligence, Data Science, Big Data) review [Book]  2018-3-19 18:1

    Interesting! The book will teach you as a layman so it is the best book to pick if you have just stepped into the globe of artificial intelligence or wish to know about it in general. This book has a very simple to understand language with a straight forward approach. It is helpful for every person who is keen to learn and know about artificial intelligence and neural networks.

    0  



    Read random posts:


    Search Cloud

    Tally - Credit Card scr888.group/other-games-download/2500-download-live22 reviews jeanvaljean.es/__media__/js/netsoltrademark.php?d=scr888.pw reviews Stickman consumerconfidencereports.com/__media__/js/netsoltrademark.php?d=lpe88.life/index.php/other-games/rollex11 reviews Basics in myslot.live/games/lpe88/8-lpe88 reviews Basic Wraptight.com/__media__/js/netsoltrademark.php?d=918.cafe/home/sky-777/55-sky777 reviews Pirates cougardeparis.org/enjoy-casinos-on-the-web/%2Fdownload%2F23-rollex11-1 reviews km13020.keymachine.de/php?a[]=<a href=http://www.lesite3ei.com/__media__/js/netsoltrademark.php?d=win88.club>snooker table online games</a> reviews Data myslot.live/download/18-lpe88 reviews Basics in www.ranlevy.com/__media__/js/netsoltrademark.php?d=gavyshofyjul.mihanblog.com/post/102 reviews Stickman myslot.live/download/18-lpe88 reviews Drummond kasinovin.com/home/mega888/50-mega888 reviews Duct Tape myslot.live/games/3win8/5-3win8 Revised and Updated: The World reviews www.janiston.net/__media__/js/netsoltrademark.php?d=jom.fun reviews ATS fjohnston.com/__media__/js/netsoltrademark.php?d=kasino.games/downloads/314-download-joker123 reviews ProtonVPN – advanced online dich123.com/Dich-thuat-da-ngon-ngu.html for everyone reviews Mod breathcontrol.com/__media__/js/netsoltrademark.php?d=scr888.men reviews Data carehomesales.com/__media__/js/netsoltrademark.php?d=jom.fun reviews ProtonVPN – advanced online k71.shaiyo-aa.com/phpinfo.php?a[]=<a href=http://Madeinsyria.ru/bitrix/rk.php?goto=http://www.ongbaby.com/blog/categories/joker123>temple of ocean king 3rd visit</a> reviews afieldtherapy.com/__media__/js/netsoltrademark.php?d=scr888.men reviews Brilliant news.ezyget.com/886-ntc33/profile reviews

    About Us

    We deliver reviews of items/services from multiple category. Find and read opinions on clothes, Tv Shows, ebooks, video games, meals, gadgets, services or household items. Would you like to rate your recent purchases on Amazon or Ebay? Or maybe something was not good enough and would you like to express your sadness? Do not wait and do this here! We give you the opportunity to attach URL going to item/service you want to review.

    Contact

    www.add-reviews.com
    [email protected]
    [email protected]
    P: (123) 456-7890

    Newsletter